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STRESSES IN AND GENERAL INSTABIILTY

OF MONOCOQUE ~ WITH CUTOUTS

VI - CALCULATION OF THE BUCKLING LOAD OF’CYZENDERS

WITH SIDE mur SUBJECW TO PURE=lNG

By N. J. Hoff, Bertram Klein, and Bruno A. Boley

A strain-energy theory was developed for the calculation of the
lmckling load in genenl instability of circular reinforced monocoque-
cylinders having a side cutout and sub~ected to pure bending. The
theory was applied to two series of specimens.,each’containing three
cylinders, which were tested and reported In part IV in this program
at the Polytechnic Institute of Brooklyn Aeronautical Laboratories.
The average deviation between theoretical and experimental buckling
load was P1’.lpercent for the first series and 34.4 percent for the
second.

INTRODUCTION

In the present report, the last report of a series of six (see
references 1 to 5) dealing with monocoque cylinders with cutouts, the _
calculation of the lnzcklingload of a cylinder which has a.side cutout
and fails in general Instability when subjeoted to pure bending is
undertaken. General instability ‘isdefined as the simultaneous buckling
of the circumferential emd longitudinal reinforcing elements of a mono-
coque cylinder together with the sheet attached to them. As the cal-
culations given herein follow closely those presented in reference 3,
it should be consulted for the development of some of the fundamental
connections used in the present report.

The first step in the strain-energy calculation was the assumption
of a buckled shape. This was done after examination of the deflection
patterns observed in the tests described in reference $. The stringer
bordering the cutout on the compression side always showed the greatest
deflections, and its distorted shape was very similar to a full sine
wave . For the specimens having a symmetric cutout (reference 1) the
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wave length was only slightly greater than the length of the cutout, but
.

for the specimens with side cutout the length of the wave varied and was
observed to %0 definitely greater. For this reason, in the present report
the wave length L was considered a para~ter, the value of which had to

.

le determined from the requirement that the buckling load he a minimum.
This procedure differs from that adopted in the calculation of the general
instability of the cylinders with symmetric outout In which the wave
length was assumed to be a known constant-,namely the length of the
cutout. —

In the cirmmf’ezwntialdirection the deflected shape at-buckling
is represented by the first–seven terms of a Fourier expansion. The
circumferential coordinate is measured from the edge of the cutout, and
the length of the interval in whioh the Fourier series is defined is
considered as one of the parameters of the problem. The bounda~ con-
ditions at the end of the interval determine four of the seven coeffi-
cients of the series, and one of them is indeterminateas in all buckling
problems. The remaining two coefficients,as well as the wave-len@h _
parameter, are calculated from the requirement that the buckling load be
a minimum.

The assumptions made regarding the lnzckllngpattern in the circum-
ferential direction are identical tor the cylinders hating a symmetric
cutout and for those having a side cutout. For cylinders having a side
cutout, however, additional considerationswere necessaqy beoause the
deflections extended into the complete portions of the cylinder. It-
was decided to assume that-the expressions developed for the Imckled
shape in the cutout portion were also valid for the complete portions
of the cylinder; this assumption,in effect, means that the restraint
due to the continuity of rings and sheet in the complete portions is
neglected. The Justification for this assumption 1s the resulting com-
parative simplicity of the calculations,as well as the olservatlon that
the deflections always were considerably smaller in the complete portions
than in the cutout portion. —

,.

The following st~in-energy quantities were considered: radial
and tangential bending: as well as torsion of the slmingers;beniiingof

..

the rings in their plane; and shear in the sheet. The extensional
stmin energy in the sheet was taken into account by adding an effective
width of sheet to the stringers and the rings. In the calculation 05
the external work it was assumed that the applied moment oaused a linear
distribution.of the strain in the cutout portion of the cylinder. The-
forces corresponding to these strains were applied to the stringers at
the ends of the wave, &nd the sum of the products of these forums and
the Misplacements of their points of application was taken as the
external work. *

The buckling load was calculated fron.the requirement that-the
strain ener~ corresponding to the transition from the ~%uckled into

.—
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.
the buckled shape he equal to the work done %y the applied loads. The
minimum value of the luckling load was found by assuming the circum-

. ferential wave length to be equal to the length of some integral number
of stringer fields, and the axial wave length, some integral number of
ring fields. The values of the two undetermined Fourier coefficients
were calculated to make the ‘bucklingload a minimum. This minimum value
of the %uckling load then was detemnined and compared with other minim–w
values obtained on the basis of different choices of circumferential and
axial wave lengths. Between 6 and 10 combinations were investigated for
each of the six cylinders - three of which are shown in figure 1 - in
order to find the a%solute minimum value of the buckling load.

The investigation was conducted at the Polytechnic Institute of
Brookl~ Aeronautical Ialoratories under the sponsorship and with the
finmcial assistance of the National Adviso~ Committee for Aeronautics.
For his substantial share in the numerical work the authors are indebted
to &’. JohnG. ~ldOS.

SYMBOLS

.

c
●

d

E

G

Go

Geff

i
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Fourier coefficients

cross-sectionalarea of stringer plus its effective width
of sheet

Fourier coefficients

geometric factor in torsional rigidity GC

width of psmel measured along circumference

Young’s modulus

shear modulus

shear modulus of sheet covering at zero compressive -
load

effective shear ‘modulus

index indicating ~osition along circumference

moment of inertia

moment of inertia of ring cross section and its effective
width of sheet for %end3ng in its own plane
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moment of inertia of stringer cross seotdon and its
effeotive width of sheet for bending in radial
dimctlon (about a tangential axis)

moment of inertta of stringer oross seotion and its
effeotive width of sheet for bending in tangential
direotion (about a radial axis)

Index indlaating position alo~ axial direction
_.

trigonometric funotione of cp,n, a, and b

length of wave in axial directiom
.

distance between ad~aoent rings

number of ring fields Involved in failure

applled lending moment; functfon of n, a, and b appearing
in strain energy of bending.in rings

parameter defining wave length In oircumferentlal
dlreotlon

po3gm3mlal funoticms of a @ i. ..

maximum coqnwssive force acting at buckling

foroe carried by the ith stringer at buokling

funotion of x appearing In shear strain ener~

radius of cylinder
.

function of q),n, a, andb appearing in shear stnin
energy

number of stringer fields ~nvolved in failure

total number of stringers In cylinder

thickness of sheet covering

strain ener~

bending strain energy stored in rings

shear strain energy stored @ sheet

radial bending strain energy stored In stringers

tangential bending strain energy stored In stringers
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u~ torsion strain energy stored in stringezw,

2W effective width of sheet

Wr radial displacement of a point on a ring or a stringer

Wt tangential displacement of a point on a ring or a stringer

w work done by applied forces

x axial coordinate

a angle subtendedby cutout

%9% coefficients used in calculation of shear strain
-I due to displacements of Its corners

7 shear strain

5 shift of peutral axis from horizontal diameter

6 nomal stmin in a stringer

compressive strain at budkllng

coordinate

THE DEFLECTED SHAPE

The shape of the bulge at buckling is determined mainly by

in a

the
radial defle&ions. The foUowlng exp&sion was chosen to represent the
radial deflections:

‘r = aokl sin2(=/L)

= sin2(nx@)(ao + al cos nq + a2 cos 2nq + a3 cos 3rq

+b1sinncp+b2sin2nq +3 j sin 3nq) (1)

provided that

O~q~ (x/n) ~

‘r = o

(la)

(1%)



.

.—

when q ~ (fi/n)
.

The notation and the sign conventions are shuwn In figure 2. *.—

The Ieforiuatlonsof the rings were a~sumed to %e inextetiional.”
.—

The condition of inextensionalit~ is

‘r = - %pp

Equations(l) and (2) determine the tangential

(2)

deflections as folb%m:

‘t = ( /)sin2{7m@) [- aoq - al n sin nq-

(4) (/)
+ 1 n cosncp+ %22n cos

pro7i.ded‘that

(@4 (/)sin 2nq2- a~ Sn sin 3nrp

..
Integration of the bracketed expreeeion in the right-hand mem%er of
equation.(1) yielti”an integration cons~t that was omit%d from the
bracketed expression in the right-hand member ofi-quation (3). The
physical meaning of this constant Is a rigid-ldy rotation of the ring.
Moreover,

Wt = .0 (3%)

when (p> (n/n)

If it is required that there be a smooth +mensition letween the
bulge snd the nondistorted part of the cyltnder at g = (fi/n), the fol- “
lowing conditions must be satisfied:

The tangential displacement mus&w.nish, that-is,

Wt=o (4a)

when Q = (fi/n)

----—

.—

.—

- .. -
—

The radial displacementmust vanish, that is,

Wr=o

.

.—
(4b)
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There must le no abrupt change in the direction of the tamgent,
that is,

&r/&p = o (4C)

when cp= (m/n)

There must he no ahupt change in the curvature, that is,

#wr/# .0 “ (4d)

when q = (m/n)

The four conditions (equations(~ to (w establish four relations
between the Fourier coefficients and make it possible to express any four
coefficients by meens of the remaining three. If aoj al, and %1 are

retained as the lasic parameters, the following four equations are
obtainsd:

With the notation

and

~ = (8/5)a1 - (9/5)ao

a3 = (3/5)a1 - (4/5)ao 1
b2 = (16/5) bl + (18/5) nao

33 = (9/5)%~ + (~/5) ~.
I

end after substitution of equation (5) in equations (1) S@ (3),

‘r = aokl sin2(fi~)

(5)

(6)

(7)



where

[

,-

‘1 = I +a c=nq+ (1.6a - 1..8) cos 2ncp+ (0.@ - 0.8) cos 3nV

+ b sin w + (3.2b + 3.6Yr) sin 2mq + (1.8b + 2.47r) sin 3nq] (7a)

and

w~.= aok3 sin2(mc~) (8)

where

k3 “= (l/n)~-nq - a sin ncp - (1/2)(1.6a - 1.8) sin 2~

- (1/3) (o.& - 0.8)sin 3nq + b cos ncp + (1/2) (3.2b + j.6Yc) COB @

+ (1/~)(1.8% + 2.4Yr)cos3w] (&) ““-

Eq&tions (7) and (8) are valid, provided that

When (p is greater than (sr/n), the deflections are assumed to vanish.
Typical examples of the deflection patterns in the plane of the rl~
are shown in figures 3 and 4

CAI.CULATIONOF STRKIX ENEKZ

Strain Energy Stored In Rings

The strain energy stored in any one ring is

[ r/]J“’n[w.+@r/*2jJ2@U = (1/2) (EI) r3 (9)

If the value of’ wr is substituted from equation (7) h“ the strati ‘
ener~ is summed up over all the rings, the following engyessicm is
ohtained:

where m is the total number of rings.included in the wave length. The
integrationyields a result in closed fomn. The same is tfie of the
summation if all the rings have the same lending rigidity= In such a
ease the total strain ener~ Ur stored in all the rings becomes

Ur = (3/16)(a~/~)(E?)r(rn+ l)M (11) -

-- -

.ti —

.

—

—

=
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—
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—
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.-
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when
.

.

and

m>l

Ur = (1/2)(a~r3)(EI)rM

(1.la)

(12)

when

m= 1 (12a)

where

[ ( - *2)+ q6.oloo5(l - 4n2Y + ~*303387(1 - ~’)
~ = ~ + ~ .053096 1

- 18.095573fI_ - 4n2)~l - gn~

[

.-

+a - 9.047786<1 - 4n2)2 - 1.5079645(1 - Z2)2 8

)(+ 30.159289(1 - n2 I-- 4n2~ + 18.0c35573[1- 4n2)(l - 9n2)]

+~[4(l-n2) +2.4 fl-W2)+~3c697~(l -4n2)2+4206366x(l -~2j2

2,(. - 4n2) - 3.68~1+ 2.4(1 - n

[

- 4r19(1 - 90?]

+ a2 1.5707963[1 - n2)2 + 4.0212386(1 - 4n2 2) + O.5654867(1 - %2)2]

[
+%2 1.5707963(1 - n$)2+16.084954(1 - 4n2)2 + 5.08938(1 - gn2T)2~

[
)(+ a% 6.4(I - n’ I - 4n2~ + 3.84(I - 4n2) (1 - *2X (13)

Strain .ner~ Stored in Stringers

The strain energy shored i;.the stringers beoause of lending
in the radial direction is .

(14)

where the summation is extended over all the &tringere contained in the
bulge. Substitution and integration yield

‘strr
-.

(15.) -
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Both k
1

afi (EI)~trr vary from stringer to stringer, (EI)~trr

lecause the effective width of sheet to be added to the stringer section
changes. For this reason the summtion has to le evaluated numerical.ly.

The fJtrainenergy stored in the stringers %ecause of bending in the
tangential direction is

J&.@#ytkua~rt=x (1/2) (EI)Btrt ~ (16)

where the summation is etinded over all the stringers contained in the
bulge. Substitution and integrating yield

v Because %oth k3 and (EI)Strt vary from stringer to stringer, the

summation has to be evaluated numerically.

The strain energy stored in the stringer %ecause of torsion is

In this equaticm

stringer, and the
in the %ulge. In

(17)

.

(18)

)/(l/r)(a’wr (ax%) is the unit angle of twist of the

sumnmti.onis extended over all the stringers contained
.

the ewreaslon for the

c = 0.14L34

because the test specimens were provided
edge length a. Differentiation gives

where

Saint-Venant tors~cmal rigidity,

(l&)

with square section stringers d

.-

.

sin (2Yfx/lL) (19)

.—

k4
1

=n- a ein ncp- (3.2a - 3.6) sin 2ncp- (l.& - 2.4) sin 3rK!

1+b cos nq +-(6.4b + i’.2Idcos 2nqY+ (5.41J + 7.2Yc) cos 3@ (19a)
--
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.

Hence the strain energy of torsion is

(20)

where the summation includes all the stringers contained in the lulge.
Because the variation of the torsional rigidity with effective width is
r@gligi%ly small, the factor GC was written lefore the summation sign.
The summation was carried out numerically.

Strain Energy of Shear Stored

The shear strain energy In the panel is
effective shear modulus Gef multiplied by
shear strain ?’ intherame~. The value of

—

In Sheet

taken as the avemge
the square of the average
7 is calculated from the

displacements of the fo~ corners of the panel”. The total stmin energy
of shear stored in the sheet then is —

u (W= 7%ef#1tdsh = (21)

The effective shear modulus depends upon the geometrio and mechanical
properties of the panel and the average strain therein. Its value was

taken from the empirical c’urvesestablished earlier at Polytechnic
Institute of Brooklyn Aero~~tical La.horatoriesand presented in
figure 24 of reference 6.

The avem,ge angle of shear 7 was calculated from the equation

(- +1)(%,,+ ‘w+.,, - ‘w,,+, - ‘ti+.,,+1) (22)

where the first subscript refers to the circumferential locaticm of the
corner of the Danel and the second to tie axial location. as ah- h
figure 5. !l?he-veluesof the factors
the equations

~ -d ~ were ~lculated from

~= (1/10)(d/r) = (1/10)(2fi/S)

~= l/2 {

(23)

.
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suhtituti- yield

$jQ& (~eff/Go) i~i
(24) - ‘--

U* = (1/2)(td~l)Go
i=o

where s is the number of stringer fields involved in the bulge, Q is
a functiaa of X only, and R is a function of q only. The sum-

mation >— Q gives a result in—

{[& Q3 I=S sin2 (xj)/(m+
j=o jd

/[l=(1/4)(m + 1) 1- cos (2Yr)/(m+ 1]} “

provided that

When m = I,

The meaning of%he sym%ol

[(R= ~kl,l- kl,i+l)

closed form as follows:

11) - sln2 [ 1}dil + I)/(m+ 1) 2
‘1

(25)

(25a)

—

E Q=2 (25%)

R is

)]
2 (26)

- %(k3,i + k3 , 1+1
. —

me values of kl,it ~,i+b k3,is ~ ‘3,i+l
are obtained from those of kl

d k3 (equatians (Ya) * (~)), ~W’tive~$3yr~hc~tieQ q . --

by 2xi/s or =(i+l)/S. ~ -w2ess kz,i - ‘3,i ‘e ‘s*d*

%,i
= 1 + a cos (2nni/s) + (Ica - 1.8) cos (4~@)

+( O.& - 0.8) G08 (~*/s) + 3 ‘in (2~@)
—

+(3.2b + 3.6x) sin (4mi/s) + (1. ~ + 2,4fi) sin (6*@)
(27a)

nk3,i - -
@ti/S)-a sin (2mi/s) - (1/2)(1.& - 1.8) sin (4mt/s)

- (1/3) (o.& - 0.8) sin (6YCXL/S)+ % cos (2-/s) .

+(1/2) (3.2b + 3.6d COB (4~/@ + (1/3) (1. ~ + 2.4x) cos (6mi/s)
(em)

the summation of the R quantities indicated in equation (24) was

carried out numerlca~.
—
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WORK DONE BY ~ JKmczs
●

As w&s mentioned in the INTRODUCTION, the strain was assumed to
be distributed lhearl.y over the sections of the cutout portion of the
cylinder. The force in each stringer was calculated as the product of
the strain, the elastic modulus, and the cross-sectional area of stringer
plus effective width of sheet. These foroes were assumed to be the
external forces applied to the stringers at the end of the axial wave
length. Because of ths reduction in the effective width of sheet on
the compression side of the cylinder the neutral axis in bending is
shifted toward the tension side. This shift was calculated and taken
into aocount when the forces acting upon the ends of the stringers were
determined.

The distance between the points of.application of the forces
shortens when the stringers %end during the buckling process. This
shortening multiplied by the force is the work done by the force. The
total external work is the sum of all the work quantities calculated for
the individual stringers:

(28)

where PI is the e~ernal foroe acting upon the Ith stringer amd the
summation is extended over all the stringers contained in the wave Sength.

. Substitutions and integmtion yield

= (1/J+)a~(5F/Z)Pcr~~i/pcJ(%,t+%,i9 (29)

where Pcr is the foroe acting in the most highly compressed stringer.
.

The swmuation was oarried out numerically.

CAICIIIXITOIiOF BUCKCZNG

The buckling condition is

‘r + ‘strr + Ustrt +Ut+uah=w (30)
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where the values of the uantities must be taken from equations (11) or
(12), (15), (17), (20), ?24), and (29), respectively. Eqwtion (30) =S
solved for Per, which is a multiplying factor in the expression for

w, and minimized.by means of the folluwing procedure:

A value of n corresponding to a circumferentialwave length
extending over an integral.nuniberof Wringer fields was first ammzmsd,
and an htegml num”er was chosen for m + 1, the nunilerof ring fields
included in the axial wave length. On the basis of these tentative
valuea, M, kl, k3, h k4 were computed. Nefi, Pcr waa assured.
This assumption pemitted the calculation of the effeotive width of
sheet end consequently of the moments of inertia of the stringers and
made possible the determititfon of the valuea of Geff/Go from the graph.

The summations were then carried out. Subati.tutionof the results in
equation (30) resulted in a polynomial pl of the second degree in a

and % In the left-hand member ad another polynomial p2 of the second

degree in the right-hand member, p2 mltiplied by Per. Solution for P=
gave the fracticn

Pl(a,b)
Pcr = Pm

(32)

This expreaaion for Pcr may be minimized with respect to a and b
by setting

(32)

The partial differential coefficients of pl and p2 are linear

functionf~of a and b. Equation (32) represents three connections
between Per, a, and b. They were solved by a rapidly converging

tria&n.d-error method. First, a value was asaumed for Pcrl and a

and b were determined from the two linear equations. Then the values
of a and b were aubatituted into the quadratic erpreaaion for Per.

The procedure waa repeated with the ald of new assumptions for Pcr until

the value obtained was close

When the

substantially

value of Pcr

from th-value

enough to the asaumed value.

obtained in these caloulatims “differed

aaaunwi at the outset, the momnts of inertia

—
..—

.

.

.

—

.

. ,..—
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and the effective shear modulus had to he recalculate& and the entire
procedure repeated. All the calculations were carried out for a number —

of different choices of n and m. The buckling loads corresponding
to these different values were compared, and the smallest one was con-
sidered.as the true buckling load. Details of the procedure mqy %e seen
from the numerical emmple in the appendix. .-

. of
in

COMPARISON 03’THEORY AND EXPERIMENT

Numerical calculations were carried out for the two arrangements
stringers and three circumferential oizes of cutouts investigated
the experiments described in reference 4. T.YTicalbuckling patterns

obtained in the calculations are shown in figure= 3 and 4, and details
—-

of the.numerical results are presented in table 1. Theoretical and
experimental lending moments at buckling are compared in figure 6.

The theory predicted bending moments at %uckling which were, with
one exception, consistently higher than those obtaine& in the e~eri-
ments. Moreover, the deviations between theory and e~kriment increased
systematicallywith decreasing circtierential length of the cutout.
Strain-energy calculations are lmown to yield too high buckling loads
when the deflected shape asslwueddiffers from the actual sha~e of
distortions.

The circumferential wave length was yredicted by theoq with
satisfactory accumcy. In the atial direction the theoretical wave
length is greater than the one o%served. The detiation is slight in
the case of the 16-stringer ~ecimens and large in the case of the

—

8-stringer specimens. Small changes in the axial wave length, how-
ever, have little effect upon the buckling load.

CONCLUSIONS

A strain-energy theory has been developed for the calculation of
the buckling load in general instability of circular reinforced mono-
coque cylinders which have a side cutout and are sub~ected to pure
bending. When the theory was applied to the test cylinders of part 2X
of the present series of investigations, the following percentage
deviations from the e~erimental values were obtained: 54.8, 32.4,
and 16.1 percent for the 45°, 90°, and 1350 cutouts, respectively of
the 8-stringer series; and 47.4, 30.8, and -3.2 percent for the 45°,
9Q”, and 135° cutouts, respectively, of the 16-stringe-r”s~es. “-”
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The authora believe it would be desirable to continue the theoretical.
.

Investigationson the %asis of more refined assumptions for the deflected
shape at lnzc~ing. Strati-energy calculations are lmown to yield too
high buc~ing loads when the deflected shape assumed differs from the
actual shape of distortions. More experimental work Is aleo needed for
a better understanding of the general instability phericmmnonof rehforcSd
monocoque cylinders having a side cutout----

Polytechnic lnstitwte of Brooklyn
Brooklyn, N. Y., ~certiber26, 1946

—
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AHENDIX

IruMERIc!ALExAM=E

—

Details of the numerical work perfomed in connection with the
determination of the buckling load for a test specimen a= shown. The
cylinder considered is cylinder 39 of reference 4. Pertinent data to be
referred to are Msted as follows:

Radius, r,in. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Distance between adjacent rings, Ll, in. . . . . . . . . . . . . . 6.429

Width of panel measured along circumference, d, in.. . . . . . . . 7.854
Angle su%tendedby cutout, a, deg . . . . . . . . . . . . . . . ..”45
Totalnuniber of stringers incylflnder,S . . . . . . . . . . . ... . . 8
Stringer cross section, in.. . . . . . . . . . . . . . . . . . 3/8 x 3/8
Ring cross section, in.. . . . . . . . .’. . . . . . . . . . . 3/8 x 3/8

Young’s modulus, E,psi . . . . . . . . . . . . . . . . . .10.5x106

Shearmodulus, G,psi. . . . . . . . . . . . . . . . . . .. 3.9x106
Shear modulus of sheet covering at zero compressive
*load,Go,ysi. . . . . . . . . . . . . . . . . . . . . . . 3.9 X106

Thiclmess of sheet covering, t, in.. . . . . . . ● . ● . . . ● . . ~.o~
Moment of inertia of ring cross section and its effective

r

dth of sheet for herding

7

its own plane, Ir
(1/2)(3/8)[(1/8) + (0.012~3 , ink. . . . . . . . . . . 80.35 X10”6

Once a value of s, the numler of stringer fields involved in
failure, is chosen, it is possible to reduce the expressions denotedby

“ ‘1’ ‘3’ ad ‘4
definedby equations (13), (7a), (~), and (1%),

respectively, to arithmetic polynomials in a and b. The one for M
is obtained by simply inserting the values of n = (S/2s) and its powers
into equation (13). For s = 3, the result is:

MX 10-5 = 0.0@0877a2 + 0.0131007112 +

+ 0.00285815a_b + 0.oo84369a +

For the

tabular
form:

evaluation of

arrangement.

.

o.~9654065

o.1010576b (33)

and k~ it is convenient to set up a

3 this arrangement takes the following
.



.-

olllll~ 11

1111 .51-.5 1 -1

2 1 -.5 -.5 1

Mlllti- a l.&-
Pliers 1 1.8 1 ::?-
for kl

Multi- O.m 1.2bt o.45bt
p13ers 4.2411501 I..LW556
for k,

J

Multi- 1“333...b 6.5333...b+
pliers 30.1592894 3::79894
for kh

o 10

1.570756 ] .&63255

lb

+

-0.m
-1

-1.333...a

I

sin (2fi/3)

o

.8%M!55

-.8%0255

3.2b+
11.3097336

-0.6s+
0.675

-:.$K6 ...aj
.

+

sin (3sd/3)

o

0 I

o I

1.8LW

7.5398224

d
-o#15a+
0.2

-’2.4a+
3.2

For the value of the lndex i = O denotingthe positionof the stringerat the edge of the cutout,

the polymmlal for kl in a @ b is foun!lby multiplyingthe expressionsappeari~ in the first

~ ~elow the double line (labeled mnltiplierafor kl) by the numbersin the correspondingool~

listed in the first w (labeledO) and adding lilm qysntitiesof the resultsof the products. In a
similarmanner the polynailalafor 1 = 1 arid i = 2 for ~ am obtained,as wll as th.9three

valueseach for ~ ~ kb. The rasult~are presentedin tabularform as follows:

c
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a , ●
☛ , ,

i kl

I 01 3.2d..6

I 1 I - o.ga + 3.673071b + 12.4945177

1.21 - o.7a - 1.9052561b -8.6945177

‘3
k4

2.4b + 6.1261056 I 17.0666 . ..b+631@7w7w

- 1.1691344a - o.675b - 4.2063614 I -4. 849728a -10. 8b - 41.0820U7

- o.1~03& - o.525b - 2.39098271 2.~0341~+ 2.2666..b + lo.9227~

The functions (kloi - kl,i+l) @ (k3y~+l+ ~ i) c~be detitinedtith the aidof table 237.
simply subtracting or &dding tie polynomi& @ ad&cent rows in the first two columns of the
It mustbe renmibered that kl = 0~k3=0tieni = 3 since the deflections have been

vanish at the third strin&m, where i = 3. H ~ is takenas 0.0785 and at as -0.5, the

‘= (kl,f ‘kl,i+l)ar - )CL becommfor each field:(k3,i+l+k3,i t

!I!ABLE3

ith field R

1 -0.2@5532a+ 0.5768263 - 0.147112

2 -0,665227* - o.164686b - 1.6344@4

3 -0.ll~39a - o.km3g8b - 1.878358

table.
assumed to

function
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Before the stringer bending strain energy, shear stmin ener~, and external work can be

evaluated: It is neceseag to asauma first a value of the Wckling 1- FJOthat the nummi cd

values of the stringer mcuuente of Inertia, effective shear mcdulua, and effective area may be

determined. Since the last three quantitiesare functions~f the normal strainacting in the
axial fibers at buckling, a value of the critical strain IS aseumgd. AL90 in order to locate

the position of the neutral axk at failure, the critical strain must be kncmn. In the preEent

-h
example, the critical strain is guessed to be 21 X 10 . Then the shift of the neutral ~s,
calculated by taking ffrat moments of area. IS rOti to be 0.07. exmessed in Percentage of

the rdius. -de foiloting table

and 5/r = 0.07

contains {he afore-nmticned

TABm 4

I I I (

:1) (2) (3) (4) (5) (6) (7) (8) (9)

i E 2W *Otry I
Etmt & ‘efr ‘O ‘erf

o
~.w ~ 10-4 ~.~g-)~ .1?x 10-? 435 x 10-4 2.69 x 104 0.633 C.1664 0.0704

1 19.506 2.648 23.65 2Ml 5,91 .419 .1724 .16014

2 19.506 2.648 23.85 203 5.91 .419 .1724 .16014

Column (1) refers to the 9trinm3r 6tation. Column (2) . the strati at these locations. is

tirect~ proportional to ‘Ae U-stance frmn the neu&jj ‘axis, since a linear strain di&-ibution

iB assumed. Column (3) ie the effective tiath of curved. sheet calculated from equation (30)

of reference 7. COIUCDIS(4) and (5) gim the mcnwnts of inertia of the stringers phs their

effective width of curved sheet. These are c.dctited from equations (34)EUXI(36)of
reference7, with specialconsldezatkmsfor the edge stringerbecause it has effeoti~ewlith

I I
. .

&-

0)
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on only one side.
in the sheet when

21

Column (6) indicates the ratio of the actual strain
the monocoque cylinder buckles to,the buckling strain

of a panel of sheet of T3.30 x 10-4 as given in reference 6. These values _.
are needed to obtain the percentage reduction in the value of the shear
modulus recorded in figure 24 of reference 6 and presented in column (7).
Adding to the cross~ectional area of the stringer, 0.140625 squere inch,
the sxea of the effective width of sheet which is 0.012 tbes a value of
column (3) yields a value of effective area shown in column (8). The
entries in column (9) can be computed with the aid of columns (8) and
(3) .

The next step in the calculations is to assume a value of m + 1
the number of ring fields involved in failure. It is then ~ossible to
write the equation for the buckling condition in terms of the pammeters
aandb. It is convenient to multiply the numerator and denominator

terms of equation (31) by [(m+l)@] X 104 and to solve for e x 104
max

instead of G-; this procedure requires that each strain energy be

multiplied %y [(NM] X 104’ and that the ex~ernal work be multiplied

bY [m+l)fi] X 104. men m +1 = 11, from equations (11), (15), (17),
(20), (24), md (29), there r~sults: L

.

o~3/wll)’(m.35 x m-6)/lo3]M x 104‘-r[(m+l)@] x 104 =a2

.. =a~ 1822.94 (MX 10-5) (34)

where MX 10-5 is given in equation (33).

●

2=
a. E [(

)(
30.298 Istrr k: + 30.298 I

)]
Strt < (35)

i

where the indicated sunm?ationcan he evaluated by taking the s~ of the
products of the squares of the polynomials for both kl and K3 appearing

in table 2 and 30.298 times the entries for corresponding values of i
listed in columns (4) md (5) of talle 4. For this purpose it is hely-
ful first to calculate and record the quadratic polynomials in a and b

.
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which represent the squares of ~ and ~ for each value of i. These expressions are not shuun

here .

~t~m’+l]~]xu4=ao[~ 1 ~ ~ ‘)2 # (10)2(6.429) (3.9/10.7) (0.002769) ~ kk x 104

.

()
a~(o .03947) ~ k~ (36)

Where the SUJIIIBStiOIIis’prfmmwd by

value of i.

r— .

EJquex’lngand adding the values of ls~ given In table 2 for each

I

[ ( -’f+:~o.o~) (7.@W/(8) (6.429)] (3.9/10.5) (11)21

(37)

where the e=tion cam be deduced by squaring each polynomial of table 3, multlpmng the ~6flt bY

130.57 times the proper value of
pef+o) to be found. in column (7) of table 4, ad addingall suoh

products. A table containingthe tenus In ~ la needed. It ia not givenhers. And finally,

2
=a~

{[
x d ‘; (o .38379)A

Olmx eff~igmx)](k~+k~~ (38)

where the swmmtiau Is carried,out by fimlingfor each value of f ~ha sum of t sqUSreSOf kl ti

k
. These quantitiesan evaluatedin connectionwith the determinationof the stringerbanding strain

e r= multiplyingthis sum by 0.38379tires the correspondingvaluo appearing in column (9) of
table ~, and addingall such prcducts.

‘Ill’”

.
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In the present numerical example ~ x 104 has been assumed to

be 21 for the calculation of the position of the neutral axis, effeckive
widths of-sheet, moments of-inertia, and effective areas. The same value
5.ssubstituted into equations (40) and (41). The values of a and h sre
found to be

a= -3.4349

1

(42)
l)= -1.74254

When these results are inserted into equation, c- X 104 becomes

22.44. Experience has shown that the difference between the value

6max= 22.44 X 10-4 obtained and the value G- = 21 X 10-4 assumed

is small enough to make a reyetitlon of the calculations unnecessary.
The changes in the values of the effective widths, moments of inerb-la:
location of neutral axis, and effective--shearmodulus resulting from

the increase in ~- from 21 X 10-4 to 22.44 X 10-4 would have a
negligible effect upon the calculated buckling strain. Hence

22.44 x 10-4 my be taken as the critical lnzcklingstrain.

The critical moment is computed from the relation

.

.

-.

where P is the force in a stringer at bucKLing, d is the distance
of the stringer from the neutral sxis, and the sunmation must he taken
over the entire cylinder. Expressed @ terms of strain, this relation . ,
is

(43)

since
——

For a critical strain of 22.44 X 10-4, Mcr becomes 174,960 inch=pounds.

-.

,

.-

.
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‘TABIE1

TAEmATIoEoFmmL!m

I il

s M9Xp B/r ‘lmx s (m+ 1) -a -b

(:g) (%%) (in.-lb) D%V%GS

8 45 174,960 113,000 54.8 0.07 22.44x 1o-4 3 7 3.4349 1.7425
w 142,8!20 lo7,m ::.; .07 18.67 4 10 2.~4 2.7464
135 116,070 loo,coo . .05 1,6.u 4 10 2.&13 2.8887

16 45 3&,6@ 232,500 47.4 0.05 24.83 6 7 2.3323 3.1193
90 225,690 172,600 30.8 .04 1.6.76 7 2.3449 3.1744
135 164,470 169,m -3.2 .04 14.13 2 7 2.3471 3.2175

.

. . . . . .
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s= 4

n= I

. ii = -2.7?39

b= -2.7464 b = -3.1193
8

z
cd
m

-9.- D~e@eofrius iuMsownpw (zwcordhuJto -4.- D-W StlSPeOf m illits OW@IM (SCCOld@ to
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Figure6.- Comparisonofcalculat& and experimental critical moments.


